Search results for "gas adsorption"

showing 3 items of 3 documents

Cation influence in adsorptive propane/propylene separation in ZIF-8 (SOD) topology

2019

Separation of propylene/propane is one of the most challenging and energy consuming processes in the chemical industry. Propylene demand is increasing and a 99.5% purity is required for industrial purposes. Adsorption based solutions are the most promising alternatives to improve the economical/energetic efficiency of the process. Zeolitic Imidazolate Frameworks (ZIFs) combine the desired characteristics from both MOFs and zeolites: tunability and flexibility from metal organic frameworks, and exceptional thermal and chemical stability from zeolites. In order to enlighten the role of the cation in the sodalite ZIF-8 framework for propane/propylene separation, dynamic breakthrough measuremen…

Materials scienceSolucions polimèriquesGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringSeparationchemistry.chemical_compoundAdsorptionPropaneEnvironmental ChemistrySelective gas adsorptionMaterialschemistry.chemical_classificationZeolitic Imidazolate Framework (ZIFs)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesZIF-67HydrocarbonchemistryChemical engineeringMUV-3Chemical stabilityMetal-organic framework0210 nano-technologySelectivityZIF-8CobaltZeolitic imidazolate frameworkChemical Engineering Journal
researchProduct

Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams

2019

L.N.M and R.E.M wish to acknowledge the financial support from the EPSRC industrial CASE award (grant EP/N50936X/1). A.T and G.B would like to thank the financial support from the Fondo per il finanziamento delle attività base di ricerca (grant PJ-RIC-FFABR_2017). Metal-organic frameworks (MOFs) are a class of porous materials that show promise in the removal of Toxic Industrial Chemicals (TICs) from contaminated airstreams, though their development for this application has so far been hindered by issues of water stability and the wide availability and low cost of traditionally used activated carbons. Here a series of three MOF-activated carbon composite materials with different MOF to carb…

Materials scienceChemistry(all)Activated carbonNDASchemistry.chemical_elementgas adsorption010402 general chemistry01 natural sciencesCatalysisCatalysisAmmoniachemistry.chemical_compoundmedicineactivated carbonporous materialPorous materialsQDComposite materialwater stability010405 organic chemistrybusiness.industryGeneral ChemistryChemical industryWater stabilityContaminationmetal-organic frameworkMetal-organic frameworksQD Chemistry0104 chemical sciencesGas adsorptionchemistryMetal-organic frameworkbusinessPorous mediumCarbonActivated carbonmedicine.drug
researchProduct

Silica aerogel–metal composites produced by supercritical adsorption

2010

Abstract Silica aerogel has been loaded with ruthenium acetyl acetonate (Ru(acac) 3 ) by adsorption from supercritical carbon dioxide. Adsorption isotherms and kinetics were measured at different pressures and temperatures. The properties of impregnated aerogel were obtained by optical and electron microscopy (SEM), X-ray microanalysis (EDX) and thermogravimetric analysis (TGA). Results showed that Ru(acac) 3 can be uniformly dispersed into the aerogel up to 5 wt%. Moreover, precursor loading is controllable by properly changing operating conditions. The adsorbed metallorganic compound has been reduced to elemental ruthenium by heat treatment without inducing degradation and morphological c…

Thermogravimetric analysisSupercritical carbon dioxideMaterials scienceMetal-matrix compositesGeneral Chemical EngineeringAerogelschemistry.chemical_elementSilicaAerogelCondensed Matter PhysicsMicroanalysisRutheniumGas adsorptionMetalAdsorptionChemical engineeringchemistryvisual_artvisual_art.visual_art_mediumPhysical and Theoretical ChemistrySupercritical adsorptionCompositesThe Journal of Supercritical Fluids
researchProduct